Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
PLoS Biol ; 21(5): e3002118, 2023 05.
Article in English | MEDLINE | ID: covidwho-20235131

ABSTRACT

The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. Reliable estimates of the infection fatality ratio (IFR) and infection hospitalisation ratio (IHR) along with the time-delay between infection and hospitalisation/death can inform forecasts of the numbers/timing of severe outcomes and allow healthcare services to better prepare for periods of increased demand. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in England approximately monthly from May 2020 to March 2022. Here, we analyse the changing relationship between prevalence of swab positivity and the IFR and IHR over this period in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models, and Bayesian P-spline models. We analyse data for all age groups together, as well as in 2 subgroups: those aged 65 and over and those aged 64 and under. Additionally, we analysed the relationship between swab positivity and daily case numbers to estimate the case ascertainment rate of England's mass testing programme. During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late 2021/early 2022, the IFR and IHR had both decreased to 0.097% and 0.76%, respectively. The average case ascertainment rate over the entire duration of the study was estimated to be 36.1%, but there was some significant variation in continuous estimates of the case ascertainment rate. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta's emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late 2021/early 2022, these time-lags had decreased to 7 days for hospitalisations and 18 days for deaths. Even though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on the IHR and IFR. As investments in community surveillance of SARS-CoV-2 infection are scaled back, alternative methods are required to accurately track the ever-changing relationship between infection, hospitalisation, and death and hence provide vital information for healthcare provision and utilisation.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Pandemics , England/epidemiology , Hospitalization
2.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-2292262

ABSTRACT

Background: Since the start of the COVID-19 epidemic in late 2019, there have been more than 152 affected regions and countries with over 110,000 confirmed cases outside mainland China. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that more than two thirds (70%, 95% CI: 54% - 80%, compared to Singapore;75%, 95% CI: 66% - 82%, compared to multiple countries) of cases exported from mainland China have remained undetected. Conclusions: These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

3.
Am J Public Health ; 113(5): 545-554, 2023 05.
Article in English | MEDLINE | ID: covidwho-2258149

ABSTRACT

Data System. The REal-time Assessment of Community Transmission-1 (REACT-1) Study was funded by the Department of Health and Social Care in England to provide reliable and timely estimates of prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection over time, by person and place. Data Collection/Processing. The study team (researchers from Imperial College London and its logistics partner Ipsos) wrote to named individuals aged 5 years and older in random cross-sections of the population of England, using the National Health Service list of patients registered with a general practitioner (near-universal coverage) as a sampling frame. We collected data over 2 to 3 weeks approximately every month across 19 rounds of data collection from May 1, 2020, to March 31, 2022. Data Analysis/Dissemination. We have disseminated the data and study materials widely via the study Web site, preprints, publications in peer-reviewed journals, and the media. We make available data tabulations, suitably anonymized to protect participant confidentiality, on request to the study's data access committee. Public Health Implications. The study provided inter alia real-time data on SARS-CoV-2 prevalence over time, by area, and by sociodemographic variables; estimates of vaccine effectiveness; and symptom profiles, and detected emergence of new variants based on viral genome sequencing. (Am J Public Health. 2023;113(5):545-554. https://doi.org/10.2105/AJPH.2023.307230).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , England/epidemiology , Public Health , State Medicine , Cross-Sectional Studies
4.
J Gerontol B Psychol Sci Soc Sci ; 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-2253109

ABSTRACT

OBJECTIVES: Pre-pandemic research suggests assistance networks for older adults grow over time and are larger for those living with dementia. We examined how assistance networks of older adults changed in response to the onset of the COVID-19 pandemic and whether these changes differed for those with and without dementia. METHODS: We used three rounds of the National Health and Aging Trends Study. We estimated multinomial logistic regression models to test whether changes in assistance networks during COVID-19 (2019-2020) - defined as expansion, contraction, and adaptation - differed from changes prior to COVID-19 (2018-2019). We also estimated OLS regression models to test differences in numbers of helpers assisting with one (specialist) vs. multiple (generalist) domains before and during COVID-19. For both sets of outcomes, we investigated whether pandemic-related changes differed for those with and without dementia. RESULTS: Over all activity domains, a greater proportion of assistance networks adapted during COVID-19 compared to the pre-COVID-19 period (RRR = 1.19, p < .05). Contractions in networks occurred for those without dementia. Transportation assistance contracted for those with and without dementia, and mobility/self-care assistance contracted for those with dementia. The average number of generalist helpers decreased during COVID-19 (ß = -0.09, p < .001). DISCUSSION: Early in the pandemic, assistance networks of older adults adapted by substituting helpers, by contracting to reduce exposures with more intimate tasks for recipients with dementia, and by reducing transportation assistance. Future research should explore the impact of such changes on the well-being of older adults their assistance networks.

5.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Article in English | MEDLINE | ID: covidwho-2231236

ABSTRACT

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , Infant , Bayes Theorem , Seroepidemiologic Studies , Australia , SARS-CoV-2 , England
6.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: covidwho-2229659

ABSTRACT

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Young Adult , Adult , Middle Aged , SARS-CoV-2/genetics , Phylogeny , England/epidemiology
7.
PLoS Comput Biol ; 18(11): e1010724, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140359

ABSTRACT

BACKGROUND: Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AIM: We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. METHODS: On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. RESULTS: Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. CONCLUSION: High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.

8.
J Gerontol B Psychol Sci Soc Sci ; 2022 Jun 26.
Article in English | MEDLINE | ID: covidwho-1978223

ABSTRACT

OBJECTIVES: The death of a spouse is an established predictor of mental health decline that foreshadows worsening physical health and elevated mortality. The millions widowed by COVID-19 worldwide may experience even worse health outcomes than comparable pre-pandemic widows given the particularities of dying, mourning, and grieving during a pandemic defined by protracted social isolation, economic precarity, and general uncertainty. If COVID-19 pandemic bereavement is more strongly associated with mental health challenges than pre-pandemic bereavement, the large new cohort of COVID-19 widow(er)s may be at substantial risk of downstream health problems long after the pandemic abates. METHODS: We pooled population-based Survey of Health, Ageing and Retirement in Europe data from 27 countries for two distinct periods: (1) pre-pandemic (Wave 8, fielded October 2019 to March 2020; N = 46,266) and (2) early-pandemic (COVID Supplement, fielded June to August 2020; N = 55,796). The analysis used a difference-in-difference design to assess whether a spouse dying from COVID-19 presents unique mental health risks (self-reported depression, loneliness, and trouble sleeping), compared to pre-pandemic recent spousal deaths. RESULTS: We find strong associations between recent spousal death and poor mental health before and during the pandemic. However, our difference-in-difference estimates indicate those whose spouses died of COVID-19 have higher risks of self-reported depression and loneliness, but not trouble sleeping, than expected based on pre-pandemic associations. DISCUSSION: These results highlight that the millions of COVID-19 widow(er)s face extreme mental health risks, eclipsing those experienced by surviving spouses pre-pandemic, furthering concerns about the pandemic's lasting impacts on health.

9.
Nat Commun ; 13(1): 4500, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972602

ABSTRACT

Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n = 102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R = 0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R = 1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/epidemiology , Child , England/epidemiology , Humans , Specimen Handling
10.
Lancet Reg Health Eur ; 21: 100462, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966923

ABSTRACT

Background: The Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage. Methods: In the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022). Findings: We estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76-3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91-0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00-1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0-0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1047, 64.8% (62.4-67.2) were BA.1; N=568, 35.2% (32.8-37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34-0.41). The highest proportion of BA.2 among positives was found in London. Interpretation: In February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required. Funding: Department of Health and Social Care, England.

11.
BMC Infect Dis ; 22(1): 647, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1962762

ABSTRACT

BACKGROUND: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. METHODS: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September-27 September 2021) and 15 (19 October-5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. RESULTS: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8-23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. CONCLUSIONS: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , England/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
12.
Nat Commun ; 13(1): 4375, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960372

ABSTRACT

The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant (first detected in November 2021) exhibited a high degree of immune evasion, leading to increased infection rates worldwide. However, estimates of the magnitude of this Omicron wave have often relied on routine testing data, which are prone to several biases. Using data from the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys assessing prevalence of SARS-CoV-2 infection in England, we estimated the dynamics of England's Omicron wave (from 9 September 2021 to 1 March 2022). We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct variants, intermittent epidemics of similar magnitudes may become the 'new normal'.


Subject(s)
COVID-19 , Epidemics , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Humans , SARS-CoV-2/genetics
13.
Epidemics ; 40: 100604, 2022 09.
Article in English | MEDLINE | ID: covidwho-1905565

ABSTRACT

The time-varying reproduction number (Rt) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of Rt from case data. However, these are not easily adapted to point prevalence data nor can they infer Rt across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020-December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of Rt over the period of two subsequent rounds (6-8 weeks) and single rounds (2-3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in Rt over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in Rt over the summer of 2020 as restrictions were eased, and a reduction in Rt during England's second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , COVID-19/epidemiology , Communicable Disease Control , Humans , Prevalence , Reproduction
14.
Science ; 376(6600): eabq4411, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1861571

ABSTRACT

Rapid transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to record-breaking incidence rates around the world. The Real-time Assessment of Community Transmission-1 (REACT-1) study has tracked SARS-CoV-2 infection in England using reverse transcription polymerase chain reaction (RT-PCR) results from self-administered throat and nose swabs from randomly selected participants aged 5 years and older approximately monthly from May 2020 to March 2022. Weighted prevalence in March 2022 was the highest recorded in REACT-1 at 6.37% (N = 109,181), with the Omicron BA.2 variant largely replacing the BA.1 variant. Prevalence was increasing overall, with the greatest increase in those aged 65 to 74 years and 75 years and older. This was associated with increased hospitalizations and deaths, but at much lower levels than in previous waves against a backdrop of high levels of vaccination.


Subject(s)
COVID-19 , Epidemics , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , England/epidemiology , Humans , Incidence , Prevalence , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
15.
EClinicalMedicine ; 48: 101419, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821213

ABSTRACT

Background: Prevalence of SARS-CoV-2 infection with Delta variant was increasing in England in late summer 2021 among children aged 5 to 17 years, and adults who had received two vaccine doses. In September 2021, a third (booster) dose was offered to vaccinated adults aged 50 years and over, vulnerable adults and healthcare/care-home workers, and a single vaccine dose already offered to 16 and 17 year-olds was extended to children aged 12 to 15 years. Methods: SARS-CoV-2 community prevalence in England was available from self-administered throat and nose swabs using reverse transcriptase polymerase chain reaction (RT-PCR) in round 13 (24 June to 12 July 2021, N = 98,233), round 14 (9 to 27 September 2021, N = 100,527) and round 15 (19 October to 5 November 2021, N = 100,112) from the REACT-1 study randomised community surveys. Linking to National Health Service (NHS) vaccination data for consenting participants, we estimated vaccine effectiveness in children aged 12 to 17 years and compared swab-positivity rates in adults who received a third dose with those who received two doses. Findings: Weighted SARS-CoV-2 prevalence was 1.57% (1.48%, 1.66%) in round 15 compared with 0.83% (0.76%, 0.89%) in round 14, and the previously observed link between infections and hospitalisations and deaths had weakened. Vaccine effectiveness against infection in children aged 12 to 17 years was estimated (round 15) at 64.0% (50.9%, 70.6%) and 67.7% (53.8%, 77.5%) for symptomatic infections. Adults who received a third vaccine dose were less likely to test positive compared to those who received two doses, with adjusted OR of 0.36 (0.25, 0.53). Interpretation: Vaccination of children aged 12 to 17 years and third (booster) doses in adults were effective at reducing infection risk. High rates of vaccination, including booster doses, are a key part of the strategy to reduce infection rates in the community. Funding: Department of Health and Social Care, England.

16.
Wellcome Open Res ; 5: 143, 2020.
Article in English | MEDLINE | ID: covidwho-1675237

ABSTRACT

Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world.  These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

17.
Science ; 375(6587): 1406-1411, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1673338

ABSTRACT

The unprecedented rise in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections during December 2021 was concurrent with rapid spread of the Omicron variant in England and globally. We analyzed the prevalence of SARS-CoV-2 and its dynamics in England from the end of November to mid-December 2021 among almost 100,000 participants in the REACT-1 study. Prevalence was high with rapid growth nationally and particularly in London during December 2021, with an increasing proportion of infections due to Omicron. We observed large decreases in swab positivity among mostly vaccinated older children (12 to 17 years) relative to unvaccinated younger children (5 to 11 years), and in adults who received a third (booster) vaccine dose versus two doses. Our results reinforce the importance of vaccination and booster campaigns, although additional measures have been needed to control the rapid growth of the Omicron variant.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , England/epidemiology , Humans , Immunization, Secondary , Middle Aged , Prevalence
18.
Lancet Respir Med ; 10(4): 355-366, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655306

ABSTRACT

BACKGROUND: England has experienced a third wave of the COVID-19 epidemic since the end of May, 2021, coinciding with the rapid spread of the delta (B.1.617.2) variant, despite high levels of vaccination among adults. Vaccination rates (single dose) in England are lower among children aged 16-17 years and 12-15 years, whose vaccination in England commenced in August and September, 2021, respectively. We aimed to analyse the underlying dynamics driving patterns in SARS-CoV-2 prevalence during September, 2021, in England. METHODS: The REal-time Assessment of Community Transmission-1 (REACT-1) study, which commenced data collection in May, 2020, involves a series of random cross-sectional surveys in the general population of England aged 5 years and older. Using RT-PCR swab positivity data from 100 527 participants with valid throat and nose swabs in round 14 of REACT-1 (Sept 9-27, 2021), we estimated community-based prevalence of SARS-CoV-2 and vaccine effectiveness against infection by combining round 14 data with data from round 13 (June 24 to July 12, 2021; n=172 862). FINDINGS: During September, 2021, we estimated a mean RT-PCR positivity rate of 0·83% (95% CrI 0·76-0·89), with a reproduction number (R) overall of 1·03 (95% CrI 0·94-1·14). Among the 475 (62·2%) of 764 sequenced positive swabs, all were of the delta variant; 22 (4·63%; 95% CI 3·07-6·91) included the Tyr145His mutation in the spike protein associated with the AY.4 sublineage, and there was one Glu484Lys mutation. Age, region, key worker status, and household size jointly contributed to the risk of swab positivity. The highest weighted prevalence was observed among children aged 5-12 years, at 2·32% (95% CrI 1·96-2·73) and those aged 13-17 years, at 2·55% (2·11-3·08). The SARS-CoV-2 epidemic grew in those aged 5-11 years, with an R of 1·42 (95% CrI 1·18-1·68), but declined in those aged 18-54 years, with an R of 0·81 (0·68-0·97). At ages 18-64 years, the adjusted vaccine effectiveness against infection was 62·8% (95% CI 49·3-72·7) after two doses compared to unvaccinated people, for all vaccines combined, 44·8% (22·5-60·7) for the ChAdOx1 nCov-19 (Oxford-AstraZeneca) vaccine, and 71·3% (56·6-81·0) for the BNT162b2 (Pfizer-BioNTech) vaccine. In individuals aged 18 years and older, the weighted prevalence of swab positivity was 0·35% (95% CrI 0·31-0·40) if the second dose was administered up to 3 months before their swab but 0·55% (0·50-0·61) for those who received their second dose 3-6 months before their swab, compared to 1·76% (1·60-1·95) among unvaccinated individuals. INTERPRETATION: In September, 2021, at the start of the autumn school term in England, infections were increasing exponentially in children aged 5-17 years, at a time when vaccination rates were low in this age group. In adults, compared to those who received their second dose less than 3 months ago, the higher prevalence of swab positivity at 3-6 months following two doses of the COVID-19 vaccine suggests an increased risk of breakthrough infections during this period. The vaccination programme needs to reach children as well as unvaccinated and partially vaccinated adults to reduce SARS-CoV-2 transmission and associated disruptions to work and education. FUNDING: Department of Health and Social Care, England.


Subject(s)
COVID-19 , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Child, Preschool , Cross-Sectional Studies , England/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , Surveys and Questionnaires , Vaccine Efficacy , Young Adult
19.
Innovation in Aging ; 5(Supplement_1):96-96, 2021.
Article in English | PMC | ID: covidwho-1584805

ABSTRACT

The COVID-19 pandemic has left older adults around the globe grieving the sudden death of relatives and friends. We examine if COVID-19 bereavement corresponds with older adults’ depressive symptoms in 27 countries, and test for variation by gender and country context. We analyzed the Survey of Health, Ageing and Retirement in Europe (SHARE) COVID-19 data collected from N=51,383 older adults (age 50–104) living in 27 countries between June-August 2020, of whom 1,363 reported the death of a relative or friend from COVID-19. We estimated pooled-multilevel logistic regression models to examine if COVID-19 bereavement was associated with depressive symptoms and worsening depressive symptoms for older men and women, and we tested whether the national COVID-19 mortality rate in their country had an additive, or multiplicative, influence. COVID-19 bereavement from the death of a relative or friend is associated with significantly higher odds of reporting depressive symptoms, and reporting that these symptoms have recently worsened since the outbreak of COVID-19. Net of personal loss, living in a country with the highest COVID-19 mortality rate corresponds further with women’s depressive symptoms;however, living in the midst of more COVID-19 deaths does not alter the implications of personal loss for depressive symptoms. COVID-19 deaths have lingering mental health implications for surviving older adults. Even as the collective toll of the crisis is apparent, bereaved older adults are in particular need of mental health support.

20.
Science ; 374(6574): eabl9551, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1494927

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were rising during early summer 2021 in many countries as a result of the Delta variant. We assessed reverse transcription polymerase chain reaction swab positivity in the Real-time Assessment of Community Transmission­1 (REACT-1) study in England. During June and July 2021, we observed sustained exponential growth with an average doubling time of 25 days, driven by complete replacement of the Alpha variant by Delta and by high prevalence at younger, less-vaccinated ages. Prevalence among unvaccinated people [1.21% (95% credible interval 1.03%, 1.41%)] was three times that among double-vaccinated people [0.40% (95% credible interval 0.34%, 0.48%)]. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Age Factors , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Child , Child, Preschool , England/epidemiology , Ethnicity , Family Characteristics , Female , Hospitalization , Humans , Male , Middle Aged , Prevalence , Self Report , Socioeconomic Factors , Vaccination Coverage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL